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Summary

TTis paper attempts Lo Justify mathematically the two empirical approaches to the problem
of deriving 7 2 velations from (z, ) measu rements, namely t he power- law regression and
(he probability matching mcthod™ (PMN). The basic mathematical assiimptions that apply
in cac h case are explicitly identified. In the first case, the app ropriate assumption is that
t he scatter in t he (7, ) mcasu rements reflects ex actly the ra ndomness in the connect ion
between 7 and IR due to alack of suflicient a priori information about cither of them. Inthe
second (“t se, the assumption is that the measurements have been class ified into categories
a priori, in a way that allows one to ¢x1) ¢t ancarly one to one correspondence between 7
and 11 cach catergory, the scatter i the measurements being due 10 residual noise. The
pi tper then shows how the assmuptions naturally Tead. in the first case, to a “cOnditional-
can” Z R relation o Fwhi ch the power Taws are regression based approximations, and, in

1 he scecond case toa “probability-matched ™ relation.



1 Introduction

There are two essentially diflerent approaches to estabhishing radar-rveflectivity <o rain-rate
relations from experimental data. "The fivst (and ongimal) technique to estimate ramflall using
radar measurements s based on the physical relation between the rain parameters (rain rate
12, drop size density function) and the radar reflectivity cocflicient 7 (sce c.g. Ryde 1946,
Marshall and Palimer 1948). Oviginally, a simple power law 7 = a R was used. Subsequent
regression analyses of measured data consisting of simultancous observations of rain inten-
sities and radar reflectivities have produced a plethora of power-law 7 I? relations, showing
larpge variations in the value of the coeflicient « and the exponent b (see c.g. Battan 1973).
Most of these relations were calculated from disdrometer-measured drop size histograms,
typically using notoriously biased sample moments to estimate the corresponding values of
7 and . Several authors have proposed subjective classification criteria to reduce these
ambiguities (see e.g. Austin 1987). Typical subjective classifying categories include drizzle.
thunderstorm rain, wide-spread rain, convective cell rain, cte.

An altoget her different second approach to relate Z to IR and reduce these ambiguitios
was origi nallv proposed by Calheiros and Zawadlski (1987), and laterdeveloped and extended
by Atlas andRosenfeld (see c.p. Atlas et al 1990, Rosenfeld et al. 1991 and 1995h). I its
present for m, the resulting “probability matching mcthod” (P NN seeks to classify the type
of rain at hand using objective criteria belore attempting to derive the appropriate 72 1
relation. Rathier than expressing the 7 I2 relation in terms of a given set of rain parameters,
the miethod first classifies the rainregime according to quantitatively robust ¢rit eria, then
(ACrives theappropriate 7 R relation divectly from marginal 7 and 1! data, collected fron
sample evenits go ve rned by that particular regime. Thie resulting relations are therefore no
longer given by analytic closed-form expressions, but they are just as efficient ly computable

as the parametric closed form relations described above.

This paper attempts to justify mathematically the two empirt cal approact jes to the
problemof derviving 7 2 relations: tnepower-raw regressionand the PNINL Incach cirse. we
identify exphicitly the basicmathematical assumptions that iipn1y’. andwe silo\\N” inwhatyw-ay
they lcad to a power-law relation, inthefirst cirse, anda “probability-matched” relation in
thesccond. I tinrirs out that the starting mathematical hypotheses appropriate to cach case
are

1) one is given simu ltancous (7, ) mcasurciments from one or more rain events with little
or 1o a priori climatologi cal or physical in formation.

2) One is given Z-and [2- measu rements from one or more rain (v» (v itls sharing precise
objective climat ological| physical and geometric characteristies,



from which one wishes to derive the 7 12 relation which best predicts B given 7, for the

particular class of raim events at hand.

The main difference is in the amountof effortone decides to expenda priort in classifving
the rain events according to the relevant clima tologica 1/ physi cal/geometric considerations.
Incachof the two cases, the guiding principle is to make sure that the 7 2 relation derived
i s optimal according to the mathematical assumptions made. This ensures that, given a
particular rain event, the estimates obtained using cither one of these two approaches can

he rigorously justified without resorting to extrancous assumptions,

The first set of assumptions leads to a conditional-mean 7 I relation, the optimal
relation i this case. 1tis discussed in section 2, where it is then shown how the power laws
Z = al?t are morve or less reasonable approximations of the optimal conditional-mean Z-
relation. In section 3, we show how the scecond set of assumptions naturally leads to the
PMM. In this case, the PMM 1s itself the optimal relation.

We  take this opportunity to point out that other approaches. suchas the “parametric”
(forlack of abetter deseription) met hod deseribed in Haddad ot al ( 19964 ) and applied to
estimate rain profiles in Hadldad et al ( 1996h). can be used. We shall confine 1 his discussion

to t he two empiricalimet hods deseribed above.

2 Z-- I? using no a priori classification

Assume that a large number of carcful simultancous (7, I?) mcas urenients were collected
using disdrometers or radar-and- rain-g anges during one or more typical rain events, and
thal a sampled joint probability density function Py ey has been compiled. Without ac-
counting for horizontal and vertical inhomogeneities in the drop distribution. which can
cause non-untformities in t he 7= and 13- mecasurements, or lor the possible chicages inthe
stratiform/convectivie nature o1 t herain event as it cevolves intime, 72 and /¢ will st ill he
correlated,but there will be o one-to-one correspondence helween micasu red reflectivity
levels and single-point rail]-rate figures. Inthis case therefore, it is not reasonable to look for
a deterministic 74 I relationship. Rather, the best one can do under these assumptions is (o
look for that function It = f(7) which ma kes, on average, thesmallest (117017 as calculated
from the observed (7, 17) measurements. It is a basic result of probability theory that f(z)
is the conditional mean E{R | 7+ 2} of IR given that 7 =,

[ 1 7)('4],»)(:’, 7')(/}'

f(z) - ELR
™ { I Pizag(z,r)dr

7z oz (1)




Yet, in this case, traditionally, power-law relations of the form Z @ alt*have 1)(°11 11s((1,
How are 1 heyrelated to the statistically optimal approach <2 Practically,theoptimalformnla

above would Icad one to infer directly the appropriate relation using the saunple conditional
mcean. However if the conditional tii¢inn of It given that 7+ doesturnoutto bhea e

loow function ol = (as i the case whoere (0 Y/0) are jointlylognormal), thenone shouldobtaim
t 110 same values for aand b, whethier one caleulates the power-law paratneters a and b divect Iy
from the sample conditionalmean or by performing aregression on the data. 1 hree problems
arise: first and most obvious, if 1 he conditional mean of 17 given 7 is not exact Iy a power-
law function of 7, the power-law regression would produce a correspondingly inaccurate fit.
Figure 1 arcproducesan examiple due to Short et al ( 1993), showing one instance inwhich
no power law can adequat ely describe the governing 7 Irelation. Figure 1h sito\\"s {he
optimal conditional-incan relation for this data, obtained using (1), along with the power-
faw regression enrves corresponding to the two more or less dist inct rain regimes governing
different segments of the data. Note that in this case, the relative rans s, ervor due Lo the
discretization of the measurements (not including uncertainties due to the hmited hardware
precision, the st rument design, or the calibration) varies from 10 % for I? and 12% lor 7.
inthe heavy-rainsamples, to 1 S for 2 and 28% for 7, in the light-rain samples.

A sceond drawback of using unclassified data to mfer a Z-R relation. whe ther one
("1100 s(’s” 10 uscapowcer-lawapproximationorthesample conditionalmean is that one thon
11( edsanumboer of simultancous and colocated (7, Ity measurcments that is large enougl
1 0 builda suitably accurate jointdensi ty function Py gy In practice, 1t is quite difficult to
make mca surements of the pair (7, 12) that can be considered simultancous, 7, denot ing
the rada r-estimated 7 over the rain gange and /{ the rain -gauge- mea sured rain intensity.,
Morcover, collecting a sufliciently large number of samples can affect the homogeneity of t he
resulting (7, ) population, asthe example of 1Mg. Jaillustrat es.

IFinally, while the cond ition al-inean approach does produce a 7 R relation which, among,
all possible formulas one can use to relate 7 and /K, makes the smallest ranes. error whien the
data is unclassified, this crror is notneceoessarily small Infact , the crror cin beestimated
divectly Trom the simultancous (7, 1) mca surement s: itis given by the squene root of the
(conditional) sample variance, .. by the scatter in the joint (7, 1) measurements. When
thisscatter is large, the usclulness of the resulting 7 12 relation is uncertain. I'igure 1 ¢ shows
aplot of therelativeran.s. uncertainty (i .¢. of the square root of the conditional varian ce,
divided by the conditional mcan), as a function of the radar reflectivity, for the data o1 Fig.
Ja. i this case, as Z increases, the relative ran. s, uncertainty in the optimally- estim ated /¢
gradually decreases Lo about 20% (the subsequent decrease when 7 is grea ter t handh dB7
is due mainly to the extreme Jy simall sample size). AU31ABZ. one standard doeviation still
amountstoan un com forta bly larg ¢ H0%.




I using comprchensive a priori classification

[ order to avoid haviug a 2 12 relation based on measurements with a relatively large vari-
ance, and, therefore, to avoid making a correspondingly arge vonis. error in the estimation
of 12, one might try to carcfully classify one’s data a priori. Iu this scction, we shall there-
fore consider a radically different starting hypothesis: assume that a careful climatological
classification allows one to characterize the cai events as belonging to well-defined cate-
oories such that within cach category 12 and 7 can b determined from one another exactly

(with probability i.c. such tiat for cach ca cgory there exists a monotone function

IR f(Z). This function

than probabilistic) considerations appropriate to cach ol the rain categories within our hy-

which satisfie med to be derivable from physical (rather

pothetical classification. Thus, unlike the function of the same name in the previous casc,
this function [ has so far nothing to do with probabilitics. Suppose now that one wants to

determine [ not from physical considerations. but rather from measurements ol a carcfully

compiled and classified catalogue of 7 and [ measurements. How can one use probabilitic
%

find f from such a collec ion of samplc

I turns ont that, in this case, simultancous measurements are not needed. Indeed.

anppose that we have identified the rain regine of interest. and that we have enough Z-
and fi- measurements from events that fall within this regime to construct their respective
probability density functions 77 and Pp (note that this requires much fewer samples than

in the previous approach). Indeed, since [(7) = R,

[ Patayds - Pl ) ) Pty . (2

0 Jn
must hold for any z > 0 (here ['is the derivative of [). (2) shows how matching the
percentiles of the density functions Py and Py allows one to compute f(z). This result is
quite different from that of the conditional-mean approach of the previous section, because
the fundamental a priori hypotheses are different in the two cases (indeed, in this sccond case,
(he joint distribution of (7, 1?) is entirely supported on the -dimensional curve [2 - )
i he Z1RR-planc)

In practice, however, it will rarcly be possible to classify the raim events so compre-
IR relation. A small

hensively as to end up with rain regimes cach having an exact 1-1
amount of uncertainty, duc to intrinsic ambiguity in one’s measurcments, will inevitably
S

remain. How does that aflect the accuracy and applicabili y of the Z- It ela on obtained

nsine formula (2). derived under idealized assumptions 7

To address this question, suppose that instead of an exact relation [ Z) = 12, one

postula cs the existence of a relating function 7 which produces a “noisy” 7 IR relaion.




Mathematically, the assumption is that there exists an icreasing, function [+ such that
7z Reo N (3)

where Vois arandom variable representing additive noise, and where, to justify the additivity

ol this source of residual randomness, we usec the dB-variables 7, 0 101og, (/) and 12, -

101og, (), instead of 7 and R themselves. Given actual data, il one now computes a
relating function 1 according to formula (2), .e. a function which satisfies

Fi)
/ Py, (a)de - / | P <,(NUC W

how close will this [ come to the actual (optimal) Z I function 17

Under the above hypothesis (3),

/:, Py, (e)de = pr{Z, < =} (h)
sopr{l () < L)) (6)
pri{Ry -1 N 1'(2)} (7)
)
/ 7)](’, N /)(// (s)

Putting (1) and (8) together, this impolics that I and I are rel ated by

(2 I(

) )
Pt = [ Py (9)

e <) R )

To get a quantitative answer, let us make the simplifying assumption that 12y and N are
independent, and that they are both Gaussian, with N having 0 mecan. To he more exact,
one could consider the presence of an additional reflectivity noise term, e, replace (3) with
N7t Ny) = Ryt Nowhere Ny and 7 ave independent. For simplicity,we shall assume that
the radar-reflectivity measurements are accurate cnough that N would be small compared
to the other terms and may therefore be ignored. Fquation (9) then iimplies that

["(,?) =1(z) - (1- ]

V1 2a (=) - E{Ia}) (lo)

where a = 0ho i foj, is on e half the ratio of the varian cos of A and 2y and w hore
E{ Ry Jdenotes the average dI3Rin this rainregime. I hus /' under-estimates 7 at above-

average rain rates, and over-estimates I at ho:low- avera ge rain rat es, by amounts that are




proportional to the ratio a of the noisy variation to the true variation. Converting back from
logarithmic quantities, if we write 17 10log, (/) and [7 = 10Tog,,([), and rewriting (10)
in terms of the ideal [ and the retrieved [, one finds that the relative ervor is

(i

where R s the average vain rate in this vain regime. Thus, if the noisy variation is 20% as
big as the true variation, i.e.if oy = 0205, (so that a = 0.02), in order for the relative error
to exceed H%, the ratio —l{/./' must cither fall below 0.08, or it must exceed 11, This means
that even with a random variation that is 20% as big as the true variation in the rain rate.
the relative error incurred in using the 7 12 relation given by the “probability-matching”
formula (2) will not exceed H% at rain rates that lic in the interval [0.1 1,10 1] about the

average rain rate,

Thisapproach is the one adopted by Rosenfeld etal (19941) to implement the “probability
matching met hod™ (PMM). The classification eriteria sed in the P MM are

a) the effective efliciency, e the relative difference between the cloud top and cloud

bottom vapor saturation nuxing ratios

b)Y the bright hand fraction, i.c. the fraction of the radar echo arca in which the maximal

reflectivity occurs within -HES ki of the 0°Crisotherm
¢) the horizontal reflectivity gradients
d) the freezing level itself,

The Z It relation obtained as descrihed above using these classification criteria has viel ded
quite accurate estimatesof thencan-surface rain rate for tropical rain systems near Darwin,
Australia, as well as for winter convective rain systems in Isracl. A detailed discussion of
the results is beyond the scope of this paper. We refer the interested reader to (Rosenfeld o
al, 1995a and 1995b) for a detailed discussion of the classification erit eria and the resulting
relations. Here, we briefly illustrate the method using the example of g, 1 Since the
sample size is small, rather than use a comprchensive objective classification process. we
start by (subjectively) classifying the data and retaining the data subsct consisting of those
measuremen ts which corr espond to st ratiform rain. Iigure 2a shows the conditional-mean
estimate for the stratiform-rain data subset, obtained using (1 ) of the previous section, along,
with the (wo regression curves Z 1008 and 7 - 1 707{ 7. Figure 2b silo\\’s thecorre
sponding relativeran s.uncertainty. 10 we now assume thatthe classification in this case wis
tight enough to allow one toXpectancarly 011(-10” one /It relation, the optimal estimate
is (he one given by the probability-1hatehing formula (2). ligure 3 shows the resulting PN



relation, with the stratiform-rain power-law regression and the corresponding conditional
mean estimate overlaid. 1t can he noted that the regression seems to underestimate the
rain rate associated to higher reflectivitios while it overestimates the rain-rate associated (o
lower reflectivites. ‘T'he difference is not great because the sample size is very small indeed.

but, as is shown below, this apparent trend is indeed confirmed by the theoretical analvsis,

IYigure 4a snows a contour plot of the percentage error that the proba bility- matching
relation would be making, as a function of a) the vatio on /o of the noisy variation in the
rain measurements to the true variation of the rain, and b) the ratio £/ IR of the rain rate
to the meanrain rate, as given by (11 ). As obscrvedabove,aslong as on /oy is lessthan
20%t he error is less than 5% for o . T<<R/IE<10. Figure b sitow,s theratiool the 1. s.
scalterthat is due to residual noise to the true ran. s, variationin the rain. Figure 4¢ shows
the difference between 4a and 4, i.ce. t he reduction ol error whien using t he PMM.

Since the probability-matching relation is only an approximation to the optimal relation
when op is non-zero, one might well ask how well the power-law relation would do if it were
nsed in this case instead. Since the power-law regressions are themselves only approximations
of the conditional-mean 7 12 relation, let us examine what the latter does in this case,
assuming that we are able to oblain simullancous colocated (7, RY wcaswrcments wihoul
mtroducing any addilional crror beyond e assumplion of cqualion (3). 1.c. assuming that
the scatter in the joint (7, 12) samples is due entirely to (3). This last condition is important
bhecause, on the one hand, it is practically nmpossible to reahize, and because iis not a
condition that onc needs to worry about when using the probablity-matching relation: in
that case, the individual marginal densities are all that is needed. Adopting the approach

of section 2, (3) then implies that the joint density Py, ey 18 given by

Prarglzr) = Pro)-Pall(2) - 0)17(2) (12)

With the simplifying assumption that ffy and N are independent Gaussian with N
having 0 mean, this would then imply that the conditional density function Pp 00 is itsell

Claussian with conditional mean

I'(2) 4 (ox/oj)E{ 1}

EtalZa= b2 ey

(13)

and standard deviation oN/\/] 1 (on/on,)? Thus the approach of section 2 would produce
the 7 R relation given by the conditional mean

y (=) 4 208 (R,
]’mu(:) -7 ( ) ] “ { I/} (14)




where we have used aas in (10) to denote one half the ratio o3 /o7, of the variances of N and
1. Bquation (1) shows the bias between the conditional-mean relation /A':‘,,, and the actual
relation /7, while the ranes. uncertainty i the relation IA'L»,,) is actually 0‘,\v/\/l 1 (onfon,)’.
Upon converting back from logarithmic quantities. the velative hias between this relation

and the underlying actual relation [ 1s

~ 0 (15)

wehich is always bigger in absolute value than the velative error (11 ) inthe probability-
matching approach (hecause 2a /(1] 2a) is alvvays bipger then 1 //142a). 017 (o111's(.
the error in the conditional-mean 7 IR relation will increase further i one replaces t his
relation by its corresponding regression-hased power-law approximation.

I may scem surprising that the conditional mean approach does not choose the relation
[ itself as the way to estimate 2, but rather an exaggerated “bias™ as shown in (14). The
reason for this apparent discrepancy is the following: when the noise variance is zevo, (14)
confirms that the conditional-mean method does use [ to obtain its estimate of the rain, as
expected; however, as the noise inereases, the conditional-mean approach biases its estimate
towards the average E{R}, until, in the Thmito when the noise variance tends to mfinty,
it (properly) rejects the Z- It relation altogether and prefers to estimate [2 by its a-priori-
known mean E{2} without any regard to the uscless value of Z. This bias is responsible for
the fact that the resulting relative difference between fi, and the underlying [ is greater
than the difference between the probability-matched [ and /o In the power-law regressions,
it would translate into an exaggerated underestimate of the rain-rate associated to higher
reflectivitios, and an overestimate of the rain-rate associated to lower reflectivities,

4 Conclusions

The two empirical imethods of deriving Z- 12 velations, power-law regressions and the PMM

based approach; are not directly comparable hecause they start with fundamentally di fferent
underlying mat hern atical assuimptions about the nature of the randomness in the data. The
power laws are approximations to the optimal relations w hen the original data is largely
uncategorized (in that case, the seldom-used conditional- mcanmet hod act ually gives the
optimal relation). T'he PMM is the optimal relation w hen the original data is classified a
priori in such a Wiy thatonemayrcasonably ¢x1)( ¢t aonctoone orr( 'shouaeu ¢» between
7 and It The PMM remains a better approximation tha nthe conditional-mean method
(and, a fortiori, better than the regression-based power laws) il a relatively small amount of

1)




residual randomuess is sUill present alter classification, i.e.if, up to some measurement white
noise that is small compared to the rain intensity, one ¢an still ¢ xpeet that one’s classification
produces categories cach admitting a 011 (°10” one correspondencebetweenZand .
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m Darwin, Australia

Convective and stratiform rain regimes ol tropical squall line
Reflectivity factor versus rain rate observed on 26 Jannary 1989, between 1800 and
2100 local time (after Short et al, 1993).

Conditional mean relation for the data of figure la. The dashed lines correspond to

the two power-law regressions 2 = 170R™7 and 7 = 400" corresponding to the
two rain regimes governing different segiments of the data.

Relative ranes. uncertainty in the conditional-mean velation of figure 1h, i

estimated by the ratio of the condijonal standard deviation to the conditional mean.

Conditional-mean relation for the subset of the data of figure lTa corresponding to
stratiform rain.,

Relative roan.s. uncertainty in the conditional-mean relation of figure 2a, in %

robability-me ched relation for he subset of the data of figure la corresponding 1<
7

L o ilorm cain The lashed lines correspoin 1o the power law regression 7 = 10017
anc the conditiybmal-mean rela jon.

Contour plot of the relative error made by PMNM, in % as a function of the ratio on /o
of noisy variation in the measrucments to true variation in the rain (in %), and of the
ratio 101og,(12/R) of the rain rate to the mean rain vate (in dB3) - see (11).

Contour plot of the ra io on /oy of noisy variation in the measruements to true variation

in the rain, in %

Contour plot of the difference between the relative rones. variation of the noise and the
relative error made by PMM | in
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Figure 3
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